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A rheological constitutive relation used for description of the components of the dynamic shear modulus in
superposition of small oscillating vibrations on stationary shear flow has been obtained based on the dumb-
bell model.

Worldwide production of polymers has long been developed much more intensely than the production of such
traditional structural materials as cast iron and aluminum. Polymer materials (fibers, plastics, and rubbers) are as popu-
lar and necessary in our everyday life as the existing materials (metals and nonmetals) from small molecules. Polymers
are used as independent structural materials, not as substitutes.

At the same time, to obtain products from polymer materials one must process them in a viscous-fluid state.
However, the behavior of polymer materials significantly differs from the behavior of the traditional objects of study
of physicists — liquids and solid bodies — which is attributed to the complexity of the structure of polymer materials
which combines the order of solid bodies and the chaos of liquids. By virtue of the distinctive features of their struc-
ture, polymer materials possess unique properties: the capacity for large irreversible strains in the state of high elastic-
ity and also hardness and fluidity as functions of the strain time (frequency). On this basis, it may be inferred that
study of the motion of a polymer system in different units of technological equipment is a very important practical
problem; its solution requires that a rheological constitutive relation enabling one to describe the rheological (mechani-
cal) properties of a polymer be constructed.

We know of two methods of construction of the rheological equation of state: a phenomenological method
and a mesoscopic, or statistical, one. In the first case, the theory of motion of macroscopic bodies is constructed on
the basis of the general (found from experiment) regularities; in the second case one describes the object, allowing for
the molecular structure of a substance in a certain approximation and for fairly complex processes of intermolecular
interaction. Thereafter, using probabilistic methods, one introduces characteristics averaged over the ensemble of all
kinds of realizations; they are identified with the quantities determined by experiment. The rheological constitutive re-
lations obtained by any of these approaches or rheological models must be checked for correspondence to the actual
properties of polymer liquids.

The basis for the mesoscopic approach to description of the dynamic characteristics of polymer media is
formed by the equations of macromolecular dynamics to write which one uses model representations. If only the slow-
est relaxation processes in the case of flow of a polymer medium are considered, the model of a "dumbbell" is very
convenient: two Brownian particles linked by an elastic force; the equations of macromolecular dynamics for it have
the form [1]
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With allowance for the induced anisotropy, the anisotropy of mobility of the macromolecule in question can
be prescribed using the tensor coefficient of friction [2]:

ζik = ζ 



δik + 3β 




aik − 

all

3
 δik




 + κallδik





−1

 .

To find and investigate the analytical solutions of system (1) we conveniently pass to normal coordinates:
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then the diffusion rate of a bead in the coordinate system (2) takes the form
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From Eq. (1), we obtain
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After determination of ψi and ψi
0 we can write the diffusion equation for the distribution function on the basis

of the Smoluchowski equation:
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It describes the diffusion of dumbbell beads relative to each other and after its substitution into (3) enables us to ob-
tain relaxation equations for correlation moments:
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In this case the shape and orientation of dumbbells in the flow can be characterized by the following tensor:
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whence we obtain, after transformations, the rheological constitutive relations
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System (4) and (5) contains four unknown parameters η0, τ0, β, and κ. The dimensional parameters η0 and
τ0 have been evaluated by the formulas
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It is noteworthy that the rheological model (4) and (5) was obtained earlier as a zero approximation of the
available small parameters, related to the internal viscosity and the environmental aftereffect, and is a generalization of
the Pokrovskii–Vinogradov structural-phenomenological model. This model can be used for numerical investigation of
the behavior of polymers under difficult conditions of their straining; such conditions are characteristic of technological
processes of processing: outflow of a polymer jet from a circular pipe, flow with a free surface, etc.

Based on the rheological model (4) and (5) obtained, we numerically investigated in [2–4] stationary vis-
cosimetric functions: the viscosity, the first and second difference of normal stresses in simple shear, and the viscosity
in uniaxial tension as functions of a constant velocity gradient. Also, we found the ratio of the stationary viscosity in
uniaxial tension to the stationary viscosity in shear as a function of the first invariant of the tensor of additional
stresses. In [5, 6], we calculated flows in a circular pipe, which enables us to refine corrections to the Poiseuille law,
and in cylinders with a rotary end and a free surface, which made it possible to describe differences in the motion of
Newtonian and polymer fluids. The influence of the molecular weight on shear and longitudinal viscosities was found
in [7]. We note that if the condition of independence of the asymptotic behavior of the shear viscosity from the mo-
lecular weight is satisfied, there is the following relationship (found in [7]) between the anisotropy parameters intro-
duced into the equations of macromolecular dynamics: κ = 1.2β.

Straining of polymer solutions and melts in the regime of superposition of stationary shear flow on periodic
strain with small amplitudes is one efficient method of checking the rheological equations of state. Therefore, in this
work, we will study the following types of flow: superposition of small oscillating vibrations on stationary flow in the
directions parallel to the shear and orthogonal to it.

The field of velocity gradients in parallel superposition has the form
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whereas in modeling of the orthogonal superposition it appears as
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For computation from Eqs. (4) and (5) we make the quantities used dimensionless, which results in
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The dimensionless quantities in (8) are found from the following expressions:
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The parameters of the models obtained are the following dimensionless quantities: t
~
, γ~1, and γ~2, and the num-

bers We and De, i.e., a~ik = a~ik (t
~
, γ~1, γ~2, We, De).

Numerical solution of the superposition of small oscillating vibrations of simple shear flow in the directions
parallel to the flow and orthogonal to it has been carried out from model (8) using the Runge–Kutta method of fourth
order of accuracy (Fig. 1). For the Cauchy problem of the systems of equations, we selected the zero initial conditions
a~ik(0) = 0, which corresponds to straining from the state of rest. The stress grows with time, subsequently reaching the
level of steady-state straining (steady-state flow).

From the dependences presented in Fig. 1, it is clear that, as the We number grows, i.e., as the elastic prop-
erties of a polymer increase, the dimensionless amplitude of oscillation of the stress decreases and the level of vari-
ations of the stresses in steady-state flow is reduced. Furthermore, a delay of the medium’s vibrations appears with
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increase in We. If, for example, we compare the curves obtained in Fig. 1 for Newtonian (We = 0) and viscoelastic
liquids (We = 2), we see a phase shift between them. An increase in the dimensionless rate γ~1 leads to a decrease in
the oscillation amplitude and an increase in the dimensionless stress σ~12. Larger We numbers correspond to a lower
steady-state stress.

The results obtained are qualitatively consistent with the existing experimental data.
Also, we have considered the processes of straining of a medium under forced vibrations for parallel and or-

thogonal superpositions; it has been established that if D ≠ 0, we have a delay of stress oscillations from forcing os-
cillations and the value of the delay increases with De number. These results were obtained for both the parallel and
orthogonal superpositions. However, the difference in these types of superposition was established, namely, an advance
of the vibrations of the medium strained relative to the forcing oscillations was observed (Fig. 2) for certain critical
values of the rate of shear γ~1 > γ

~
1
 0 in modeling of parallel superposition for frequencies De < 1; when De = 1, the

vibrations of the medium strained coincided with forcing oscillations, and we had a delay of the medium’s vibrations
from the forcing oscillations for De > 1. Curve 1 in the figure is shifted to the left and curve 3 is shifted to the right
from the forcing-oscillation curve.

The results of calculations of orthogonal superposition have shown the absence of a change in the phase shift
between stress oscillations and forcing oscillations.

To compare the solutions of the system of equations (8) to the experimental data available in the literature we
expand σ12 for the parallel type of superposition and σ23 for the orthogonal type in Fourier series in time t, leaving
the terms with a fundamental frequency ω:
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Next we transpose σ
0

12 and σ
0

23 in expressions (9) to the left-hand side and, multiplying both sides of the equations by
−iω ⁄ γ2, we obtain that the right-hand sides of the equations represent equations for the complex shear modulus of the
parallel and orthogonal superpositions respectively:
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From these expressions, separating the real and imaginary sides G(ω, γ1) = G ′(ω, γ1) − iG ′′(ω, γ1), we can determine
the elastic and loss moduli for the parallel and orthogonal types of superposition. Using them, one can find such char-
acteristics as the dynamic viscosity η′ = G ′′ ⁄ ω and the phase angle (angle of mechanical loss) δ = arctan (G ′′ ⁄ G ′).

Fig. 1. Shear stresses vs. time for parallel superposition, κ = 0.7, β = 0.5, γ~1
= 0.5, γ~2 = 0.1, and De = 1.

Fig. 2. Dependences of ν~12 and σ~12 for parallel superposition (We = 1, κ =
0.7, β = 0.5, γ~1 = 4, and γ~2 = 0.001): De = 100.125 (1), 10 (2), and 102 (3).
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The components of the complex shear modulus depend on both the frequency ω and the rate of shear γ1. In
the case where γ1 → 0, one obtains the shear modulus G0(ω) = G0

 ′(ω) − iG0
 ′′(ω) determined by the linear-viscoelasticity

relations.
Figure 3 gives results of the numerical experiment on parallel superposition of small oscillating vibrations on

simple shear flow for different rates of shear γ1 and the following set of parameters: η0 = 1, τ0 = 1, κ = 0.7, β =
0.5, and γ2 = 0.001.

From the above dependences, it is clear that the results of modeling of parallel and orthogonal superpositions,
which have been noted earlier, lead to the fact that, for certain values of the frequency ω < ω0, the shear modulus G ′

for the parallel superposition takes, unlike the orthogonal superposition, negative values, shown on the plot by dashed
curves. Comparing the curves in Fig. 3a and d, we note that the frequency ω0 corresponds to the phase angle δ =
90o. Also, it has been established that the shear modulus takes negative values when we have a delay of the forcing
oscillations from the medium’s vibrations.

The results obtained are qualitatively consistent with experimental data [8, 9]; therefore, the next step of the
numerical experiment was to study their quantitative correspondence. In modeling the parallel superposition, we took
the values of the parameters from [8]: η0 = 501.19 P, τ0 = 0.453 sec, and γ2 = 0.001 for the rates of shear γ1 equal
to 0.056, 0.179, 0.563, and 1.790 sec−1. For numerical calculations from model (4) and (5), we selected κ and β from
the condition of best agreement between the experimental data and the theoretical curves; We took κ = 0.7 and β =
0.5. Since the samples used in the experiments had a high polydispersity, we were unable to select the values of the
rheological parameters for accurate description of the linear modulus G0

 ′(ω) obtained for γ1 = 0.056 sec−1; therefore,
in the work, we calculated the deviations (Fig. 4a) G0

 ′(ω) − Gi
 ′(ω) of the elastic modulus G0

 ′(ω) and of the following
moduli: G1

 ′(ω) obtained for the rate of shear γ1 = 0.179 sec−1 (curve 1), G2
 ′(ω) for γ1 = 0.563 sec−1 (2), and G3

 ′(ω)
for γ1 = 0.790 sec−1 (3). Curves 1′–3′ are the corresponding deviations of experimental data [8].

Fig. 3. Elastic modulus G ′ (a), loss modulus G ′′ (b), dynamic viscosity η′ (c),
and phase angle δ (d) vs. frequency ω in parallel superposition: 1) γ1 = 0.2; 2)
0.5; 3) 1.5; 4) 4.
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Data for modeling of the orthogonal superposition were taken from [9]: η0 = 30 P, τ0 = 0.03532 sec, and
γ2 = 0.001 for the rate of shear γ1 equal to 0.2, 25.4, 102.4, and 407 sec−1. The values of the parameters κ and β of
model (4) and (5) were taken to be 0.7 and 0.5, respectively. The results on the orthogonal superposition are also pre-
sented in Fig. 4b in the form of the deviations G0

 ′(ω) for γ1 = 0.2 sec−1 and the moduli G1
 ′(ω) for γ1 = 25.4 sec−1

(curve 1), G2
 ′(ω) for γ1 = 102.4 sec−1 (2), and G3

 ′(ω) for γ1 = 407 sec−1 (3). Curves 1′–3′ are the corresponding de-
viations of experimental data [9].

We note that the attempt at describing the dependence of the dynamic characteristics of polymer solutions in
orthogonal superposition based on the Leonov–Prokunin model, which has been made in [10], cannot be accepted as
successful, since the deviation from experiment attains three times in certain cases, despite the accurate description of
the initial value of the moduli.

Thus, a qualitative agreement between the theoretical dependences of the components of the complex shear
modulus in different regimes of straining and the experimental data has been shown. The existing differences are due
to the fact that the relaxation character of interaction of the macromolecule with its environment (environmental after-
effect) and the long-scale interaction of the beads along the chain, associated with the presence of topological restric-
tions in macromolecular motion (internal viscosity), have not been allowed for within the framework of the rheological
model (4) and (5). There are approaches to allowance for these factors at present, which makes it possible to investi-
gate the influence of the environmental aftereffect and the internal viscosity on the dynamic characteristics of solutions
and melts of linear polymers in shear. Another reason for the existing differences is the high polydispersity of the
samples used in the experiments [8, 9], which can also be allowed for within the framework of the approach presented
by averaging of the components of the complex shear modulus over molecular-weight distribution.

This work was carried out with financial support from the Russian Foundation for Basic Research, grant No.
03-01-00035.

NOTATION

aik, second-rank symmetric tensor describing the deviation of a statistically nonequilibrium system from the
equilibrium state; a~ik, dimensionless anisotropy tensor; c, concentration of the solution; c∗, certain constant; De, Debo-
rah number; G(ω, γ1), complex shear modulus; G ′, elastic modulus; G ′′, loss modulus; G0, complex shear modulus for
γ1 → 0; G0

 ′, elastic modulus for γ1 → 0; G0
 ′′, loss modulus for γ1 → 0; n, number of macromolecules per unit volume;

M, molecular weight; M∗, certain constant; p, pressure; p~, dimensionless pressure; R, characteristic scale; ri
1 and ri

2,
Cartesian coordinates of the radius vector of dumbbell beads; T, temperature in energy units; 2Tµ, coefficient of elas-
ticity of the model spring; t

~
, dimensionless time; U, scale velocity; W, probability density function related to the indi-

vidual molecules being in a prescribed configuration in the polymer chain; We, Weissenberg number; β and κ, scalar
coefficients of anisotropy; δ, phase angle (mechanical-loss angle); δik, Kronecker symbol; γik = (νik + νki)/2, sym-
metrized tensor of velocity gradients; γ~ik, dimensionless symmetrized tensor of velocity gradients; γ1, rate of shear; γ2,
oscillation amplitude; γ~1, dimensionless rate of shear; γ~2, dimensionless oscillation amplitude; γ~1

 0 , critical value of the

Fig. 4. Comparison of theory and experiment for parallel (a) and orthogonal
(b) superpositions.
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dimensionless rate of shear; η′, dynamic viscosity; η0 and τ0, initial values of the shear viscosity and the relaxation
time; µ, proportionality factor; νjk, velocity-gradient tensor; ν~ik, dimensionless tensor of velocity gradients; ρi, relative
motion of beads; ρi

0, motion of the center of gravity of the dumbbell; σik, stress tensor; σ~ik, dimensionless stress;
σ0 12, σ112, σ2 12, σ023, σ1 23, and σ2 23, Fourier coefficients; τ, relaxation time of the orientational process; ω, frequency;
ωj

α, average velocity of a bead with No. α; ψi, relative rate of diffusion of beads; ψi
0, rate of diffusion of the center

of gravity of the dumbbell; ζ, coefficient of friction; ζik, tensor coefficient of friction; sρiρkt, moments of second
order, characterizing dumbbell orientation on the average; sρ2

t0, equilibrium value of the expression sρ1
2
t + sρ2

2
t +

sρ3
2
t. Subscripts: i, j, k, and l, Cartesian coordinate Nos. (they take values of 1, 2, and 3); 0, initial or equilibrium

value. Superscripts: α, bead Nos. in the macromolecule model (they take values of 1 or 2); 0, center of gravity.
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